A specific role for eNOS-derived reactive oxygen species in atherosclerosis progression.

نویسندگان

  • Tomofumi Takaya
  • Ken-ichi Hirata
  • Tomoya Yamashita
  • Masakazu Shinohara
  • Naoto Sasaki
  • Nobutaka Inoue
  • Toyotaka Yada
  • Masami Goto
  • Akiko Fukatsu
  • Toshio Hayashi
  • Nicholas J Alp
  • Keith M Channon
  • Mitsuhiro Yokoyama
  • Seinosuke Kawashima
چکیده

OBJECTIVE When the availability of tetrahydrobiopterin (BH4) is deficient, endothelial nitric oxide synthase (eNOS) produces superoxide rather than NO (uncoupled eNOS). We have shown that the atherosclerotic lesion size was augmented in apolipoprotein E-deficient (ApoE-KO) mice overexpressing eNOS because of the enhanced superoxide production. In this study, we addressed the specific importance of uncoupled eNOS in atherosclerosis, and the potential mechanistic role for specific versus nonspecific antioxidant strategies in restoring eNOS coupling. METHODS AND RESULTS We crossed mice overexpressing eNOS in the endothelium (eNOS-Tg) with mice overexpressing GTP-cyclohydrolase I (GCH), the rate-limiting enzyme in BH4 synthesis, to generate ApoE-KO/eNOS-Tg/GCH-Tg mice. As a comparison, ApoE-KO/eNOS-Tg mice were treated with vitamin C. Atherosclerotic lesion formation was increased in ApoE-KO/eNOS-Tg mice compared with ApoE-KO mice. GCH overexpression in ApoE-KO/eNOS-Tg/GCH-Tg mice increased vascular BH4 levels and reduced plaque area. This reduction was associated with decreased superoxide production from uncoupled eNOS. Vitamin C treatment failed to reduce atherosclerotic lesion size in ApoE-KO/eNOS-Tg mice, despite reducing overall vascular superoxide production. CONCLUSION In contrast to vitamin C treatment, augmenting BH4 levels in the endothelium by GCH overexpression reduced the accelerated atherosclerotic lesion formation in ApoE-KO/eNOS-Tg mice, associated with a reduction of superoxide production from uncoupled eNOS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease.

NO produced by eNOS (endothelial nitric oxide synthase) is a key mediator of vascular homoeostasis. NO bioavailability is reduced early in vascular disease states, such as hypercholesterolaemia, diabetes and hypertension, and throughout the progression of atherosclerosis. This is a result of both reduced NO synthesis and increased NO consumption by reactive oxygen species. eNOS enzymatic activi...

متن کامل

Direct Endothelial Nitric Oxide Synthase Activation Provides Atheroprotection in Diabetes-Accelerated Atherosclerosis.

Patients with diabetes have an increased risk of developing atherosclerosis. Endothelial dysfunction, characterized by the lowered bioavailability of endothelial NO synthase (eNOS)-derived NO, is a critical inducer of atherosclerosis. However, the protective aspect of eNOS in diabetes-associated atherosclerosis remains controversial, a likely consequence of its capacity to release both protecti...

متن کامل

Prevention of atherosclerosis by interference with the vascular nitric oxide system.

Nitric oxide (NO) produced by endothelial NO synthase (eNOS) represents an anti-atherosclerotic principle. NO bioavailability is decreased in atherosclerosis due to increased NO inactivation by reactive oxygen species and reduced NO synthesis. Various types of vascular pathophysiology are associated with oxidative stress, with NADPH oxidases as the major source of reactive oxygen species. These...

متن کامل

Emerging roles of mitochondria ROS in atherosclerotic lesions: causation or association?

Mitochondrial-derived reactive oxygen species (mtROS) is one of the major sources of cellular ROS, and excessive mtROS is associated with atherosclerosis progression in both human and mouse models. This review aims to summarize the most recent studies showing the existence, the causes and pathological consequences of excessive mtROS in atherosclerosis. Despite numerous association and causation...

متن کامل

Reactive Oxygen Species and p38MAPK Have a Role in the Smad2 Linker Region Phosphorylation Induced by TGF-β

Background: Transforming growth factor-β (TGF-β) in addition to the C-terminal region can phosphorylate receptor-regulated Smads (R-Smads) in their linker region. The aim of the present study was to evaluate the role of signaling mediators such as NAD(P)H oxidases (reactive oxygen species [ROS] generators), ROS, and ROS-sensitive p38 mitogen-activated protein kinase (p38MAPK) in this signaling ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 27 7  شماره 

صفحات  -

تاریخ انتشار 2007